Меры центральной тенденции — служат сводными количественными характеристиками, обеспечивающими наилучшее описание множества наблюдений или оценок одним единственным числом. Термины меры центральной тенденции и «средняя величина» часто употребляются как равнозначные, хотя некоторые авторы сужают объем понятия «средняя величина» до среднего арифметического. Несмотря на разнообразие мер центральной тенденции, чаще всего встречаются мода, медиана и среднее.
Мода — это просто наиболее часто встречающееся в определенной совокупности наблюдений значение переменной. При сгруппированных данных мода определяется как середина интервала группирования, содержащего наибольшее число значений наблюдаемой переменной.
Медиана — это значение переменной, делящее упорядоченную совокупность наблюдений пополам, так что одна половина значений в этой совокупности лежит ниже медианы, а другая их половина — выше медианы. Если совокупность образована нечетным числом значений наблюдаемой переменной, то медиана равна значению переменной, являющемуся серединой упорядоченной совокупности наблюдений. Если же совокупность образована четным числом значений, то медиана определяется значением, лежащим посередине между двумя значениями, находящимися в центре упорядоченной совокупности наблюдений. Медиана — более полезная мера, чем мода, и часто используется в случае скошенного (асимметричного) распределения данных. Следует, однако, отметить, что медиана нечувствительна к величине крайних значений упорядоченной совокупности наблюдений.
Среднее арифметическое — самая распространенная мера центральной тенденции — определяется как сумма значений наблюдаемой переменной, разделенная на их число. (В данной статье под «средним» подразумевается среднее арифметическое.) Использование среднего дает исследователю ряд преимуществ. В отличие от других мера центральной тенденции, среднее чувствительно к точному положению каждого значения в распределении переменной. Правда, это достоинство среднего арифметического оборачивается недостатком в виде повышенной чувствительности к крайним значениям переменной, и потому его иногда избегают использовать в случае сильно скошенных распределений. Среднее — особенно полезная мера в области статистических выводов, поскольку выборочное среднее является относительно эффективной оценкой генерального среднего. Если из генеральной совокупности значений наблюдаемой переменной случайно извлечь даже большое количество выборок, не следует ожидать точного равенства выборочных средних между собой или генеральному среднему. Однако, можно доказать, что выборочные средние отклоняются от генерального среднего меньше, чем выборочные медианы отклоняются от медианы генеральной совокупности. Можно также доказать (центральная предельная теорема), что выборочное распределение среднего приближается к нормальному распределению по мере увеличения объема выборки.